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Anisotropic electron g-factor in quantum dots with spin-orbit interaction
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g-factor tuning of electrons in quantum dots is studied as function of in-plane and perpendicular
magnetic fields for different confinements. Rashba and Dresselhaus effects are considered, and
comparison is made between wide- and narrow-gap materials. The interplay between magnetic
fields and intrinsic spin-orbit coupling is analyzed, with two distinct phases found in the spectrum
for GaAs in perpendicular field. The anisotropy of the g-factor is reported, and good agreement
with available experimental findings is obtained.
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Spin properties in semiconductor quantum dots (QDs)
have become a field of intense research because of the
possible use of the electron spin degree of freedom as a
quantum bit.1 It is then essential to have a clear under-
standing of the processes that may induce spin relaxation
on electrons in the QD; long spin relaxation times, and as
pure as possible spin states, are required so that spin can
indeed transport information without losses. Insights on
the purity of the spin degree of freedom of electrons in
QDs can also be extracted from measurements of their
effective g-factor.

Manipulation of g-factor in semiconductors and de-
scription of its tensorial nature have been considered
theoretically as well as experimentally. Among vari-
ous techniques, appropriate system design has achieved
gate-voltage control of g-factor of electrons in a quan-
tum well2 and spin manipulation using gigahertz elec-
tric fields.3 g-factor measurements have been reported
in QDs by means of capacitance4 and energy5,6 spectro-
scopies, for example. The tensorial nature of electron
g-factor in spherical QDs,7 as well as surface8 and spa-
tial confinement9 effects, where spin-orbit (SO) coupling
plays an important role, have been addressed theoret-
ically. We have recently reported on the influence of
SO coupling on the electronic spectrum of 2D parabolic
QDs.10 Spin-orbit effects on g-factor have been addressed
for 2D electrons in a quantum well11 and for electrons in a
parabolic QD,12 with emphasis on the difference between
narrow- and wide-gap compounds.

One of the main causes of spin relaxation and g-factor
variation is the SO interaction. When QDs are built in
semiconductors of zincblende structure in the plane of
a 2D system, there are two possible forms of SO cou-
pling, namely the Rashba13 and Dresselhaus14 interac-
tions; the former is due to the surface inversion asym-
metry (SIA) induced by the 2D confinement, while the
latter is caused by the bulk inversion asymmetry (BIA)
intrinsic in zincblende structures. The SO coupling mixes
spins with different orientations in the Zeeman sublevels,
which yields an intrinsic spin relaxation source and pro-
duces variations in the QD g-factor from the pure Zeeman
splitting expected in a magnetic field.

In this work we study the anisotropy of effective g-

factors in 2D parabolic QDs, and analyze the intricate
competition15 between external magnetic fields and in-
trinsic SO couplings. Wide- and narrow-gap materials
with different confinement potentials are considered un-
der in-plane and perpendicular magnetic fields. We show
that the g-factor can be tuned to have positive, zero,
and negative values at given perpendicular fields, and
find that two distinct phases can be present in the QD
spectrum, where at low (high) fields the SO coupling en-
hances (suppresses) the Zeeman sublevel splitting. We
find that the widely used perturbative approach16 based
on a unitary transformation17 of the SO Hamiltonian has
strict limitations in QDs if the well defining the 2D con-
finement has small width. We also show that even for
in-plane magnetic fields – typically assumed to yield the
bulk g-factor without orbital contributions – the SO cou-
pling reduces the value of g, especially for large QDs.

The QD is defined by an in-plane parabolic confine-
ment, V (ρ) = mω2

0ρ
2/2, where m (ω0) is the electronic

effective mass (confinement frequency), while the per-
pendicular confinement V (z) is assumed strong enough
to reduce the electronic states to the first conduction
subband of the quantum well; its function is ϕ(z) =
√

2/z0 sin (πz/z0), z0 being the QD vertical width for
hard wall potential. In the absence of SO interac-
tions, the QD Hamiltonian is H0 = ~

2
k

2/2m + V (ρ) +
g0µBB⊥ · σ/2, where k = −i∇ + eA/(~c) is the canon-
ical momentum, g0 is the material bulk g-factor, σ
stands for the Pauli matrices, µB is the Bohr magne-
ton, and A = B⊥ρ(− sinφ, cos φ, 0)/2 describes a per-
pendicular magnetic field B⊥ = B⊥(0, 0, 1), which lifts
both orbital and spin degeneracies of levels. H0 yields
the Fock-Darwin (FD) spectrum,18 Enlσz

= (2n + |l| +
1)~Ω + l~ωc/2 + g0µBB⊥σz/2, with effective (cyclotron)

frequency Ω =
√

ω2
0 + ω2

c/4 (ωc = eB⊥/mc), where
n = 0, 1, 2, ... and l = 0,±1,±2, ... are respectively
the radial and azimuthal quantum numbers. The FD
eigenfunctions are Ψnl(x, φ) = Rn|l|(x)eilφ/

√
2π, where

Rn|l|(x) =
√

2n!/(n + |l|)!/λx|l|e−x2/2L
|l|
n (x2), in terms

of associated Laguerre polynomials L
|l|
n , λ =

√

~/(mΩ)
is the effective QD lateral length, and x = ρ/λ.

The SO Hamiltonian added to H0 is HSO = HSIA +
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HBIA. The SIA term, due to the full confining
potential V (r) = V (ρ) + V (z) and with coupling
parameter α, is given by HSIA = ασ · ∇V (r) ×
k. It can be separated as HSIA = HR + HLAT ,
where HR = −α/λ(dV/dz)[σ+L−A− + σ−L+A+] is
the Rashba term13 caused by the interfacial electric
field generated by the perpendicular confinement, and
HLAT = α(~ω0/l20)σz [Lz + (λ/lB)2x2/2] is due to
the lateral confinement (diagonal in the FD basis);
we define L± = e±iφ, σ± = (σx ± iσy)/2, Lz =
−i∂/∂φ, and A± = ∓∂/∂x + Lz/x + (λ/lB)2x/2, and

the confining (magnetic) length is l0 =
√

~/(mω0)

(lB =
√

~/(mωc)). The z-confinement yields the BIA

term,14 HBIA = γ[σxkx

(

k2
y − k2

z

)

+ σyky

(

k2
z − k2

x

)

+

σzkz

(

k2
x − k2

y

)

] ≡ HL
D + HC

D ; the linear contribution is

HL
D = −iγ

〈

k2
z

〉

/λ [σ+L+A+ − σ−L−A−], while the cu-

bic is HC
D = iγ/λ3[σ−L3

+H1 + σ+L3
−H2 + σ−L−H3 +

σ+L+H4], where Hi = Ai + (λ/lB)2Bi + (λ/lB)4Ci +
(λ/lB)6Di, with i = 1, 2, 3, 4. The sixteen functions Ai,
Bi, Ci, Di are known,10 γ is the coupling parameter, and
〈

k2
z

〉

= (π/z0)
2 for hard wall confinement. The total QD

Hamiltonian, H = H0 + HLAT + HR + HL
D + HC

D , is
diagonalized in a basis set including 110 FD states.

When considering an in-plane field (B‖) we take the
full Hamiltonian above at zero B⊥-field, H(B⊥ = 0),
plus the Zeeman contribution g0µBB‖ · σ/2, which lifts
only the spin degeneracy of levels.

Before discussing the QD effective g-factor, we com-
ment on the influence of SO coupling on the spectrum
and its competition with external magnetic fields. This is
done in Figs. 1 and 2 respectively for InSb19 and GaAs20

QDs, the former having larger SO coupling and Zeeman
splitting than the latter. In these two figures, left (right)
panels refer to an in-plane (perpendicular) field, and dot-
ted lines in panels A and B refer to the pure FD spectrum
(no SO-coupling). In panels A and B of Fig. 1, the main
effects of the SO interaction on the InSb QD levels are as
follows: crossings between FD levels are converted into
anticrossings (ACs) according to the selection rules10 of
HSO (and shifted to higher field values in the perpendicu-
lar case); the low-field spectrum is displaced to lower en-
ergies, while at high-field is not altered much; zero-field
splittings appear in the spectrum, and the original FD
energy shells are separated into components according to
the total angular momentum projection, j = l + σz/2.
Panels C and D (E and F ) of Fig. 1 show the field-
evolution of spin 〈σz〉 (orbital 〈l〉) angular momentum
expectation values for the seven lowest QD levels, where
it is clearly visible how the SO coupling mixes states, re-
sulting in σz and l no longer reflecting pure FD levels,
especially around AC points. For the purposes of dis-
cussion, we still label states by the numbers {l, σz} even
under SO interaction.

By comparing left (right) panels in Fig. 1, one can ob-
tain the QD level sequence and realize which SO mecha-
nism is responsible for the level ACs under B‖ (B⊥). Fo-
cusing on the lowest energy levels, notice at B‖ ≃ 0.1 T

FIG. 1: InSb QD spectrum [19]. Left (right) panels refer
to in-plane (perpendicular) magnetic field. Panels A and B
show spectra (dotted lines refer to QD without SO interac-
tion). Panels C and D (E and F ) show field-evolution of spin
(orbital) angular momentum expectation values for the seven
lowest levels; ground state is spin-up. Labels in C and D
show which SO term is responsible for the lowest ACs. Col-
ors indicate different levels: black, red, green, ... stand for
ground, first excited, second excited, ... states, in all panels.
A sudden change in line color indicates a level crossing.

FIG. 2: Level spectrum for GaAs QD [20]. B⊥-scale of panel
B is different from panels D and F . No AC occurs under B‖.
Ground state at low B⊥-fields is spin-down, and it is flipped
back to spin-up around 13.7 T, as shown in panel D.

that the lowest two states in the first shell have |j| = 1/2
({l, σz} = {0, 1}, {0,−1}); in the second shell, the two
lower states have |j| = 1/2 ({−1, 1}, {1,−1}), while the
two upper ones have |j| = 3/2 ({1, 1}, {−1,−1}). At
B⊥ ≃ 0.1 T, the only difference in such sequence is in
the ordering of the two upper states in the second shell,
which become |j| = 3/2 ({−1,−1}, {1, 1}). This order-
ing reversal is due to the influence of B⊥ on the orbital
features of the state, which changes the effect of SO cou-
pling on these levels; similar features appear in higher
shell states. Even though the ground state does not ex-
hibit AC for any field-direction, it is also not spin-pure at
low magnetic fields; observe that 〈σz〉 ≃ 0.75 in both B⊥

and B‖, and it is positive since g0 is negative. Regarding
level ACs, the lowest under B‖ (≃ 4.8 T) involves the
second and fourth QD states in panel A, which at that
field are the levels {0,−1} and {1, 1}; such levels are con-
nected by the operators σ±L±, and although they appear
in both HC

D and HL
D terms, this AC is mostly due to the

linear Dresselhaus term as indicated in panel C. On the
other hand, the lowest AC under B⊥ (≃ 3.3 T) involves
the second and third QD states in panel B, which at
that field are the levels {0,−1} and {−1, 1}; such levels
are connected by the operators σ±L∓, so that this AC
is due to the Rashba term HR, as indicated in panel D.
Higher energy ACs are evident at similar values of B‖

(or B⊥) and are due to the same SO mechanism. The
different SO terms in H , as well as the level dispersion
in the two field-configurations producing the ACs, result
also in different spin mixings. This clearly affects the QD

effective g-factor, as we will see below. ACs due to the
cubic Dresselhaus term are also observed at higher fields:
at B⊥ ≃ 6 T the lowest AC involves the fourth and fifth
levels, {0,−1} and {−3, 1}, connected by the operators
σ∓L3

±. Interestingly, at B‖ ≃ 14 T, where ACs due to

HC
D involve higher energy levels, 〈l〉 for all QD levels col-

lapse to zero, indicating strong orbital mixing with full
spin polarization.

Figure 2 has the same analysis for a GaAs QD. The
left panels show that in an in-plane field the SO cou-
pling is not strong enough to induce ACs in the spectrum
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(panel A), even though zero-field splittings are clearly ob-

served for different |j| values (e.g., look at the second
shell). Notice that levels present the same ordering as
in the low-B‖ InSb QD, and that spin mixing is present
in the spectrum, as states do not have 〈σz〉 = ±1 (panel
C); e.g., the ground state has 〈σz〉 ≃ 0.75 at small fields.
This shows the intricate interplay between external fields
and SO coupling in the definition of electronic properties
of QDs.15 In a perpendicular field (right panels of Fig.
2), however, a new feature is observed: the SO interac-
tion flips the spins of the two lowest levels at low fields,
so that the QD ground state becomes a spin-down level.
For this reason, the lowest AC at B⊥ ≃ 2 T (notice differ-
ent B⊥-scale in panel B compared to D and F ) involving
the second and third levels, {0, 1} and {−1,−1}, is due
to the linear Dresselhaus term. Observe in panel D that
those two lowest levels have the same value of 〈σz〉 ≃ −1
between 4 and 8 T, and that the ground state flips back to
its expected spin-up character of a g0 < 0 QD around 13.7
T, when a level crossing is verified in the spectrum (not
shown). This result prompts one to consider two distinct
ways of defining the QD effective g-factor, and points out
strict limits for the validity of the widely used perturba-
tive approach16 (or unitary transformation17) for deal-
ing with SO effects in QDs, especially if the well thick-
ness z0 defining the z-confinement21 is small. One has
to keep in mind that these results depend on the QD en-
ergy (length) scales: higher E0 = ~ω0 (smaller l0) QDs
are expected to have weaker SO effects, since their level
spacing becomes larger.

What is the ‘correct’ way of defining the effective elec-
tron g-factor in a QD? There are two possible defini-
tions involving the two lowest Zeeman sublevels for each
field-direction, namely, gE

⊥,‖/g0 = ∆E/(g0µBB⊥,‖) or

gσz

⊥,‖/g0 = 〈∆σz〉 /2, where ∆E (〈∆σz〉) is the energy

splitting (spin expectation value difference) of those lev-
els under B⊥,‖. Although the first definition is used op-
erationally in experiments where ∆E is measured, the
latter is intuitively reasonable since the g-factor is a
quantity intrinsically related to the spin value of those
levels. For no SO interaction, both definitions yield
g⊥ = g‖ = g0, so that no anisotropy is present in the g-

factor (other than the material anisotropies).2,4 Figures 3
(InSb) and 4 (GaAs) present the g-factor for different QD
lateral sizes l0, with left (right) panel for in-plane (per-
pendicular) fields, and dotted lines show results without
SO coupling. Panels A and B (C and D) use the defini-
tion of g in terms of 〈∆σz〉 (∆E), whose values can be
inferred from panels C and D of Figs. 1 and 2 (panels E
and F of Figs. 3 and 4). Notice that for InSb in Fig. 3
both definitions yield basically the same low-field results
for the B‖ case (panels A and C). The drop in g‖ is faster
in the gσz curves because the two lowest states have the
same spin at higher fields, while ∆E reaches a constant
value (panel E); dotted lines show the field value where
the original FD lowest crossing is converted into an AC
by the SO coupling at a given E0.

In the low-field B⊥ case (panels B and D), however,

FIG. 3: Electron g-factor of InSb QDs with different confine-
ment energies E0 (or lateral sizes l0). Left (right) panels refer
to in-plane (perpendicular) field. Panels A and C (B and D)
show g‖ (g⊥), while panels E and F show sublevel splitting
∆E for the two lowest QD states. Panels A and B (C and D)
show g as obtained from the 〈∆σz〉 (∆E) calculation; values
of 〈∆σz〉 for the 15 meV QD are obtained from Fig. 1. Dot-
ted lines in all panels refer to corresponding QDs without SO
coupling. ∆E in panel F is multiplied by 2. Color legend is
shown in panel B; dotted lines follow same scheme.

FIG. 4: Same as Fig. 3 but for GaAs QDs. gσz

⊥ has inverted
sign at low fields indicating that SO coupling is stronger than
the Zeeman splitting (〈∆σz〉 of the 1.1 meV QD from Fig.
2). gE

⊥ has large values at low fields. Dashed lines connecting
panels D and F show fields Bg for which gE

⊥/g0 = 1, and the
SO effect is effectively cancelled. Color legend is in panel A.
g in panel D is divided by 10.

the two g-factor definitions yield different values mainly
at weaker confinements, although the drop in g⊥ is also
faster in the gσz curves (∆E values are found in panel
F ). Observe that for the smallest confinement energy
(largest SO effect) of 3.0 meV, a sign change is seen in
gσz

⊥ around 1 T, which relates to an unusual crossing in-
volving the ground and first excited states (compare with
panel B of Fig. 1 where this crossing is absent). In both
field-directions, smaller E0 yields smaller g-factor, which
shows that SO coupling provides a channel to manipulate
g in QDs under magnetic fields. At the same time, a mea-
surement of effective g under B⊥,‖ might give information
about the values of SO constants since, as discussed in
Fig. 1, the lowest AC in the spectrum of QDs in differ-
ent field-directions is due to a distinct SO mechanism.
Notice the clear anisotropy in gE (panels C and D): the
same QD confinement shows gE

⊥ < gE
‖ , since the mixing

with higher orbitals is stronger for B⊥. If the gσz defini-
tion is considered (panels A and B), such anisotropy is
not as remarkable at low fields, although a sign change
is obtained at E0 = 3 meV, only in the gσz

⊥ curve. No-
tice that unlike the case with no SO interaction, even
B‖ reduces the g-factor and this reduction can in fact be

strong (& 50 % at l0 ≃ 300 Å).
Figure 4 shows that for GaAs both definitions in panels

A and C give essentially the same values of g‖, where ∆E
is shown in panel E. Differences are noticed only at high
magnetic fields for the weakest confinements (0.7 and 1.1
meV). Results are totally different for the perpendicular
field case. Panel B can be understood by looking at
panel D of Fig. 2 (for 1.1 meV), where it can be seen
that gσz

⊥ has inverted sign at low fields, becomes zero for
B⊥ between 4 and 8 T, then acquires inverted sign again,
and suddenly flips back to its ‘normal’ behavior at 13.7
T; under even higher fields, gσz

⊥ goes to zero since the two
lowest level spins are aligned. Panel B also shows that
larger E0 values (thus smaller SO coupling) cancels the
field range where gσz

⊥ is zero. Notice that the weaker the
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confinement the smaller the field where the sign change
occurs.

One finds totally different results for gE
⊥ (panel D, with

∆E shown in panel F ), which may even assume values
12 times larger than g0 for the smallest E0 at low fields;
still at low fields, larger E0 tend to reduce gE

⊥ towards
g0. At high fields (inset G), gE

⊥ goes to zero when the
level crossing involving the ground state occurs, and af-
ter such field it increases again. For every E0 there is a
magnetic field Bg – indicated by the dashed lines con-
necting panels D and F – where gE

⊥ goes from higher to
smaller values than g0. In Panel F , differently from what
occurs in panel E (and in panels E and F of Fig. 3), the
Bg-field defines two distinct phases in the spectrum for
a given E0: below (above) Bg the SO coupling increases

(decreases) the Zeeman sublevel splitting as compared to
the case without SO interaction; one can then say that
at B⊥ = Bg, the SO coupling is cancelled by the mag-
netic field in the formation of the sublevel splitting. Such
result emphasizes the intricate competition between ex-
ternal magnetic field and intrinsic SO coupling in QDs.
[Notice that if a broad Gaussian well or a larger z0 is con-
sidered, such phases are not observed.21] In GaAs QDs,
the anisotropic nature of the g-factor is much more pro-
nounced, despite the small values of the SO constants.

We conclude with an experimental comparison. Ref. [5]

reported Zeeman sublevel splittings in GaAs QD having
E0 = 1.1 meV under in-plane field. They found ∆E ≃
200 µeV at 10 T , while the corresponding curve in panel
E of our Fig. 4 yields ∆E ≃ 180 µeV. In a linear fit, they
found |g| = 0.29 ± 0.01, and from panel A (panel C) of
Fig. 4 one has |gσz

‖ | = 0.30 (|gE
‖ | = 0.31) at B = 10 T,

while |g‖| = 0.30 is found at B = 0 from both definitions.

We have shown how SO coupling is able to tune the
electron g-factor in QDs and even change its sign. We
have analyzed the interplay between SO and Zeeman
splittings on QD spectra and shown which SO term
causes the lowest ACs in in-plane and perpendicular
fields, as well as in different materials. We have seen
that for GaAs QDs under B⊥ the ground state has its
spin character inverted at low fields if a narrow well con-
fines the system in the z-direction. We have identified
phases of B⊥ in the spectrum where the SO interaction
increases or decreases the Zeeman splitting of the lowest
QD levels, and explicitly shown the anisotropic nature
of g-factor in QDs. All these features would not have
been accessed if a perturbative approach had been used,
especially for QDs with large lateral size.

We thank support from NSF-IMC grant 0336431,
CMSS at OU, and the 21st Century Indiana Fund.
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